

ChimiSwerve White Paper
Everything You Wanted to Know About Team 1684’s Swerve Code

(Except the Code) AND MORE!

Revision: 2020.8.17

0.0 About This White Paper
0.1 Swerve IS HARD
0.2 We’re Not THE EXPERTS… Just Experienced People
0.3 Don’t Be Afraid To Ask For Help!
0.4 Where’s Your Code, Bruh?
0.5 This Is A Living Document

1.0 Hardware/Electrical Info
1.1 About Our Swerve Modules
1.2 About Our Gyros
1.3 About Our Motor Controllers
1.4 Other Sensors

2.0 Software Info
2.1 Swerve in Teleop

2.1a How It Should Work
2.1b The Math

Controls and Inputs
Field Centric Transformation
Inverse Kinematics (Wheel Speeds and Azimuths)

Intuition
Power to the ground (Speed and Azimuth drivers)

Azimuth
Inversion Awareness

2.2 Swerve in Auton
2.2a How It Should Work
2.2b The Math Behind the Magic

Forward Kinematics (FK)
Odometry
Calibration

2.3 Integrating Other PIDs into Swerve
2.3a PIDs (PIDFs) Loops: A Primer

Why Do We Even Need Fancy Control Loops?
What Do These Letters Even Mean!?

P - Proportion
I - Integral
D - Derivative

ChimiSwerve White Paper 1

F - Feed Forward
Other Control Loop Terms

Open Loops
Closed Loops
Internal Loops (our version)
External Loops (our version)
Positioning Loops
Velocity Loops
“Inside Outside” Loops (our definition)

General Tips for Tuning Control Loops
Start with kP
Next is kD
Then kI
What about kF?

2.3b Goal Centric (Starring the Limelight)
Vision Targeting

Essentials
Easy Mode
Advanced Mode
Hard Mode
Expert Mode

Goal-Centric
Introduction
How It’s Done

2.3c Game Piece Centric (Starring the Pixy)
Introduction
How It’s Done

2.3d Maintaining Your Heading (aka Not Spinning… aka Driving “Straight”) While in
Field Centric

Introduction
How It’s Done

3.0 Other Misc. Tips & Tricks
3.1 “Zero” Azimuth Position & Pre-Match Module Testing
3.2 Protect Your Reset Buttons!
3.3 Document Your CANbus Network Topology
3.4 Know Your Electronics

ChimiSwerve White Paper 2

3.5 Invest in Good Controllers… And You Should Interpolate
3.6 Seriously, Implement Brownout Protection!
3.7 Handling Gyro Fault Conditions
THE END… or is it…?

ChimiSwerve White Paper 3

0.0 About This White Paper

0.1 Swerve IS HARD
We’re not joking. ​SWERVE IS HARD!​ Please do not attempt to do swerve if your team does not have:

1) lots of mechanical knowledge
2) lots of programming experience
3) substantial funding for a crazy expensive drivetrain
4) ridiculous persistence and dedication

We DON’T want to deter you from achieving your dream machine. ​We DO want to limit the number of
broken-down robots on the field.​ As our drive coach Jon Uren says, ​“Build within your means.”​ If your
team doesn’t meet all the requirements listed above, please reconsider attempting to do swerve.
Poorly implemented swerve (in both a programming and mechanical sense) will do your team a
major disservice. Sure, that robot might look cool or sound epic. ​But, does it work!?​ Most of the time,
the simpler the better.

0.2 We’re Not THE EXPERTS… Just Experienced People
If your team decides to go down this path, please pay close attention to the advice in this
whitepaper. We have lived through the joys and sorrows of swerve. Please note that we are not
claiming to be THE EXPERTS at swerve. Regardless, we are​ just experienced people​. We just want to
share everything we’ve learned since day 1 of the 2020 season. Like everyone, ​we are still learning
from our mistakes​. We will continue to iterate our designs so our robot can be its absolute best. We
urge you all to do the same.

By the way, this is our ​2020 reveal video​. Please watch so you know exactly what we’re talking
about.

0.3 Don’t Be Afraid To Ask For Help!
We all know that time on the robot is limited. Programmers always wish for more time on the
finished robot. Time is the most valuable build season commodity. Before something does not go as
planned, it should be part of your programming strategy to know when to reach out for help. Help
can mean looking for sample code, asking on a forum if someone has had a similar issue, or even
reaching out to other teams to review your code. Remember that other FRC programmers will likely
be in the same semi-frantic state that you are trying to figure out the one thing that isn’t working.
Someone outside of your programming team may not have the time to help you. Asking for another
team’s time during build season is a BIG ASK!

ChimiSwerve White Paper 4

https://www.youtube.com/watch?v=VP4emc-K57k

We were honored and blessed to collaborate with the EngiNERDs on the swerve drive design. That
gave us two programming teams working on the exact same problems with the same equipment.
We were able to work out some of the kinks together.

Some day, you may be the one being asked for assistance. It is an honor to be worthy of being asked
to help. Give whatever assistance that you can, but your responsibility will still be getting your own
robot ready to go.

0.4 Where’s Your Code, Bruh?
Due to the way we structured our 2020 code, we feel we cannot release it for general use. It was not
designed to be used as a library for other robots. We have a very different approach to the way we
write code. In the future, we hope to improve upon this. We strongly feel releasing our 2020 code
wouldn’t be helpful to others.

That is why we have dedicated so much time into creating this document. We still wanted to share
our knowledge and experiences with others, just in a format that would actually be helpful. We have
included some code snippets to help enhance your understanding.

Hopefully, you learn something from this document. We certainly did.

0.5 This Is A Living Document
We intend to revise this document as we acquire new swerve knowledge. Additionally, we will
modify this document as needed to help add clarification and answer commonly asked questions.

We want your feedback! Please let us know how we can improve this whitepaper!

ChimiSwerve White Paper 5

1.0 Hardware/Electrical Info

1.1 About Our Swerve Modules
We are using the ​MK2​ off-the-shelf swerve modules from Swerve Drive Specialties. We made some
modifications, but they are mainly as manufactured. We added a custom made laser cut gear to
collect encoder readings from our absolute encoders on the turning gear. We are using 4” DT
Versawheels from Vexpro. The wheels wear rapidly on the actual field, however, the tread gives us
easy indicators of change in diameter as the diamond pattern wears down. We are using the ​US
Digital MA3 ​encoders, which are absolute analog encoders.

1.2 About Our Gyros
We use two gyros on our robot; The ​Gadgeteer Pigeon IMU​ from Cross the Road Electronics (CTRE)
and ​navX-MXP​ (navBoard) from Kauai Labs.

We like each one for a specific reason. The navX plugs right onto the Roborio, so mounting is
simple. We have used this sensor for many years, so we are comfortable with it. The Pigeon is small
and can be attached directly to a Talon SRX. They perform many of the same functions with
complete libraries.

1.3 About Our Motor Controllers
Our choice for motor controllers for the swerve modules was the ​Falcon 500​ with the integrated
brushless motor by VEX Robotics and the Talon FX controller by CTRE. The reason for using this as
the drive motor was simple, power and control. The integrated encoder is adequate for counting the
distance travelled using the velocity mode to get the most consistent results regardless of voltage
differences (within reason.) We use a positioning loop that runs in the Roborio that sends a
corresponding velocity command to the Falcon every 50 hertz cycle.

We were willing to try the unproven Falcon this year because we had such success last season with
the Neo brushless motors, and the motor performance specifications listed for the Falcon indicated
that it would outperform the Neo. We had great success with the Talon SRX by CTRE during many
previous seasons. We expected the same kind of performance from the FX. The build season was
not without pain when it came to using the Falcon. Out of 20 motors that we had purchased, we
found that 2 had problems related to the motor controller prior to competition. We replaced the 2
motors after ​12 hours of troubleshooting​.

ChimiSwerve White Paper 6

http://www.swervedrivespecialties.com/
https://www.usdigital.com/products/encoders/absolute/magnetic/MA3
https://www.usdigital.com/products/encoders/absolute/magnetic/MA3
http://www.ctr-electronics.com/gadgeteer-imu-module-pigeon.html
https://www.kauailabs.com/store/index.php?route=product/product&product_id=56
https://www.vexrobotics.com/217-6515.html

The turning motor is also a Falcon 500. This choice was primarily for packaging. The integrated
motor controller used less space, so we did not have to find another location for the controller. It is
also aesthetically pleasing and symmetrical to have both motors side by side and identical. We used
a loop that ran inside the Roborio with a basic positioning loop and limited output.

Another consideration that is worth mentioning is a collaboration between our team and the
EngiNERDs (Team 2337). We used the same modules, motors, and encoders. That allowed us to split
up the development a bit and some of the modifications. We may not have tried something this bold
without their collaboration.

1.4 Other Sensors
We use several other sensors that weave into our swerve code. The most obvious is the ​Limelight2+​.
We also use two ​Pixy2s​ and a ​Lidar Lite3​. We use a ​Beetle microcontroller​ to process the data from
the ​Lidar ​so that we do not bog down the ​Roborio​. We will address the exact usage of these sensors
in later sections.

The ​Limelight ​is used to visually target the goal. We use the x and y offsets that are in the ​Limelight
to turn the shooter to the goal and gauge the distance from the goal. The ​Limelight ​has excellent
range and is able to target the goal from anywhere on the field that has a shooting solution. The
Limelight ​is mounted next to our shooter. It would be ideal to have it in line with the shooter, but
space did not allow it. Because it is not exactly in the same vertical plane, we have to compensate in
code for the offset.

The ​Pixy2​ is also a visual targeting camera and processor, but we were only able to get one digital
and one analog signal to the ​Roborio​. The digital signal tells us if there is a ball within view of the
camera. The analog signal tells us the position of the ball on one axis of the camera’s view. The
effective range is between 6 and 10 feet dependent on lighting. The ​Pixy2​ is programmed directly
with a laptop to “pick out” specific targets by color, and it is programmed to output only those two
signals described above. We have a ​Pixy2​ mounted on the center of each of our intakes to assist
with ball pickup.

The ​Lidar Lite3​ is a laser rangefinder that we have pointing forward from the front of our robot. We
process the returns from the lidar with the ​Beetle​. We were able to get the distance from the lidar to
the ​Beetle ​at a speed of at least 33 hertz (depending on the distance). The ​Roborio ​then can get that
measurement at 50 hertz.

ChimiSwerve White Paper 7

https://limelightvision.io/
https://pixycam.com/pixy2/
https://buy.garmin.com/en-US/US/p/557294
https://www.dfrobot.com/product-1075.html

2.0 Software Info

New in the 2020 season, WPILib has some swerve classes available. We did not use these classes.
We do not know how well they work when they are properly implemented. If you decide to try using
these classes, your results may vary.

There was a brief period of time that we attempted to use one of these classes, but we quickly
opted to write our own. For the purposes of future debugging, we wanted to understand every bit of
our code.

Throughout our adventures down the path of swerve, we discovered many useful resources. One of
the most important things we found was ​this Chief Delphi post​.
We used ​SwerveTester_8.xls ​to understand how each wheel reacts with different inputs and to
verify our teleop swerve control was working properly.

2.1 Swerve in Teleop

2.1a How It ​Should ​Work
You move the controller and the robot magically does what you think it should. Isn’t that the goal?
Of course it is! The way that we chose is the same way that our driver would operate a drone.
Although, we have not worked out the levitate functionality.

The robot should be free to move in any direction on the single plane of the field. It should be able to
do that at the same speed and torque.

Given the extra freedom that swerve gives the robot, both literally and in terms of holonomic
movement (can freely move in any direction, ideally with no preferred direction), operating in a
field-centric manner is immensely helpful. We consider field-centric motion essential to utilizing
swerve effectively at a competition level.

ChimiSwerve White Paper 8

https://www.chiefdelphi.com/t/paper-4-wheel-independent-drive-independent-steering-swerve/107383

2.1b The ​Math

Controls and Inputs
The driver has some intended output that they’d like the robot to do. In order to communicate this,
we define three command inputs - Forward, Strafe, and Rotation, or FWD, STR, and ROT. Let’s
define these as variables, each going from -1 to 1, with 0 indicating no control input. There are many
ways to map driver inputs to these commands via joysticks, but we chose to use a method where
one stick controls translation rate (FWD and STR) and the other’s left-right axis controls rotation
rate (ROT), as shown on the controller. These joysticks are implemented using standard libraries in
WPILib, and input is ​filtered and transformed​ to provide a better experience to the drivers.

In addition to the driver’s inputs, we can have inputs incorporated.

ChimiSwerve White Paper 9

Field Centric Transformation
Once we know the intended movement that the robot should be making, we should apply our
field-centric math. This is what’s known as a ​transformation​. In simple terms, we take what we
know about the robot’s ​orientation​ relative to the field - in this case, its angle (as measured by a
gyroscope) and our known desired ​forward/back​ and ​strafe​ commands, and adjust them so that the
robot moves relative to the field.

We define FWD and STR as the desired ​forward/back​ and ​strafe​ commands from the joystick,
relative to the field. These can both range from -1 to 1 from the joystick, assuming things are filtered
correctly, and the magnitude of the input vector (FWD, STR) shouldn’t ever be greater than 1. We’ll
find that this doesn’t matter later.

We’ll call the angle of the chassis relative to the field θ, and assume that it’s 0 when the front of
the robot is aligned with the field, away from the driver. This angle can be either defined from -180°
to 180°, or from 0 to 360 degrees - the math in this case works the same. With these in mind, we can
transform our FWD and STR commands as follows:

WD FWD os(θ) TR in(θ)F new = * c + S * s
TR STR os(θ) WD in(θ)S new = * c − F * s

First, we calculate our new FWD, which can be thought of as simply figuring out how much of each
original command (FWD and STR) are in the actual direction of the robot’s “FWD”. Likewise, we can
do the same for our STR command. This effectively transforms our commands, ​considered relative
to the field​, into commands that are ​relative to the robot​, using information about the robot’s
orientation to the field to align everything. If you know a bit of linear algebra, you might recognize
this as the result of a ​rotation matrix​, applied to the vector (FWD, STR).

Our ROT (rotation) command actually doesn’t come into play at all in this transformation. To
understand why this is, consider that

To explain this further, let’s look at the results of the the following three situations:

Example 1: Robot is aligned with field
The key here is to think about what the value of θ is, and how the value of our sines and cosines
changes as a result. Here, since we’re aligned with the field, θ=0°. Let’s check our sine and cosine
plots to see where that puts us at, in terms of values:

ChimiSwerve White Paper 10

https://en.wikipedia.org/wiki/Rotation_matrix

cos(0°) is 1, and sin(0°) is 0. If we think about a right triangle, with one of its angles being 0° and a
hypotenuse of 1, the opposing side of that triangle would have no height - and the adjacent side
would have the length of the hypotenuse, or 1. Let’s see what our math does with this.

WD FWD os(0°) TR in(0°) WD TR WDF new = * c + S * s = F * 1 + S * 0 = F
TR STR os(0°) WD in(0°) TR WD TRS new = * c − F * s = S * 1 − F * 0 = S

Our math tells us that we haven’t changed anything by doing this! Physically, this makes sense; if
the robot is aligned with the field, what it considers to be forward is the same as the field’s forward;
we don’t need to modify our commands at all.

Example 2: Robot is at 90 degrees to field
Let’s say that we’re now at a right angle to the field; our robot is sideways, so our angle θ=90°.
Again, let’s check our trigonometry. cos(90°) = 0, and sin(90°) = 1. What does our math do with
these?

WD FWD os(90°) TR in(90°) WD TR TRF new = * c + S * s = F * 0 + S * 1 = S
TR STR os(90°) WD in(90°) TR WD WDS new = * c − F * s = S * 0 − F * 1 = − F

Our commands have switched (with a small change of sign)! Again, physically, this makes some
sense. The robot is sideways; in order to go forward, it has to do what it considers a strafe, and in
order to strafe, it has to go what it considers forward.

Example 3: Robot is at 30 degrees to field
We’re now at some angle that doesn’t produce as nice a result. The robot is aligned differently from
the field, so to go straight forward or straight sideways, the robot is going to need to do some

ChimiSwerve White Paper 11

combination of what it considers going forward and going sideways. With our angle θ=30°,
cos(30°) = 0.866, and sin(30°) = 0.5. Following through the equations, then,

WD FWD os(30°) TR in(30°) WD .866 TR .5F new = * c + S * s = F * 0 + S * 0
TR STR os(30°) WD in(30°) TR .866 WD .5S new = * c − F * s = S * 0 − F * 0

Both FWD and STR contribute to each of the transformed values. This pattern will carry through for
any non-right angle, and as long as we consider our angle properly (with clockwise as positive) we’re
good to go!

Inverse Kinematics (Wheel Speeds and Azimuths)
Now that we have our FWD and STR commands transformed, we need to figure out what each wheel
should be doing to execute them. What we’re doing here is commonly referred to as ​inverse
kinematics​, or IK. We have some goal output we want to get to, and we have some actuator
parameters (or joints) we can adjust, those being our wheel speeds and azimuth angles. Inverse
kinematics is the calculation of a unique set of output settings that will give us our overall output.
Forward kinematics (which we’ll cover elsewhere) is the opposite - determining the state (or ​pose)
we’re in based on what our actuators have been doing.

First, we should account for the wheel layout. We’re going to assume our wheel pods are on the
vertices of a rectangle. To put it another way, all four wheel axles are able to lie on some circle. This
represents the majority of swerve drive setups (ours was square). If the swerve modules are not on
a square (e.g. if the robot is not square), we’ll account for that as we make our calculations.

First, let’s define the length and width of our wheelbase
as L and W, and let’s define an additional value R, as

, or the diameter of the circle that contacts all R = √L2 + W 2
four wheel axles. The units of these values don’t matter, as we’re
only going to be taking their ratios in our wheel calculations.

Intuition

To understand how we can turn our overall commands (what we
want the robot as a whole to do) into what each wheel needs to do,
we should build some intuition. It’s perfectly possible to borrow the math and program it into place
without this, but it really helps to understand how things work under the hood.

As we derive our inverse kinematics, we make some underlying assumptions, including that the
robot’s chassis acts as a ​rigid body​ - within its own reference frame, one point cannot move closer
or further away to another point. Imagine a metal cube on a desk. You can move it forward, back,
and spin it, but it’s solid and unchanging relative to itself. From a kinematics standpoint, there’s an
important fact we can draw from this. If we look at one side of the robot, all points along it have to

ChimiSwerve White Paper 12

https://en.wikipedia.org/wiki/Inverse_kinematics
https://en.wikipedia.org/wiki/Inverse_kinematics

have the same velocity forward or backward. If they had different speeds, the side would be
changing in length. Hopefully that’s not actually happening, and if our robot is built sufficiently
rigidly, it shouldn’t be.

We can back this assumption out by doing some ​vector math​. ChiefDelphi user Ether’s ​“Derivation of
Inverse Kinematics for Swerve” document​ explains this in detail. To do this, we can combine our
desired strafe and speed commands into a ​translation vector​, and our rotation command can be
combined with our robot geometry to form a rotational component. By adding these vectors, we get
our required wheel movement vector, in the form of a direction and a magnitude.

From here, we’ll define some variables to save us some work. Standard convention has them as A, B,
C, and D.

TR OTA = S − R * R
L

TR OTB = S + R * R
L

WD OTC = F − R * R
W

WD OTD = F + R * R
W

We’ll use these to calculate our resultant wheel speeds and wheel angles (or azimuth angles), or ​ws
and ​wa​ respectively.

s w FR = √B2 + C2 a tan2(B,) w FR = a C 1

s w FL = √B2 + D2 a tan2(B,) w FL = a D

s w RR = √A2 + C2 a tan2(A,) w RR = a C

s w RL = √A2 + D2 a tan2(D,) w RL = a D

What we see here is that we have common factors between our wheels. For both front wheels, we
have a common horizontal factor B, and for both rear wheels, a different common factor A. For both

1 ​The atan2 function is defined in many programming languages, and provides quadrant-aware calculations for the
arctangent function, meaning the angle output will range from -π to π, instead of 0 to π/2.

ChimiSwerve White Paper 13

https://www.chiefdelphi.com/t/paper-4-wheel-independent-drive-independent-steering-swerve/107383
https://www.chiefdelphi.com/t/paper-4-wheel-independent-drive-independent-steering-swerve/107383

right wheels, and left, we see the same thing, with common forward/backward components C and
D. This is the mathematical realization of the fact that our robot’s chassis can’t change in size or
shape. Bonus: if you know a bit of vector math, you’ll notice that we’re doing a transformation from
cartesian to polar coordinates.

Where FR, FL, RR, and RL refer to front right, front left, rear right, and rear left wheels. Our azimuth
angles should range from - to , with positive as clockwise and zero being straight ahead. Theseπ π
can be converted to degrees as necessary - just multiply by . Our wheel speeds should range80/π 1
from 0 to 1, absolute, but we’ll need to check if they need to be normalized. To do this, we just check
if the maximum of our ​ws​ values is greater than 1, and if it is, scale the values such that it’s 1.

)s ax(ws , s .ws , w max = m FR w FL RR s w RL
f ws .0i max

> 1 :
s s /ws w FR = w FR max
s s /ws w FL = w FL max
s s /ws w RR = w RR max
s s /ws w RL = w RL max

Now we have all ​ws​ values ranging from 0 to 1. The wheel speed assumed to be in the direction the
wheel is facing (​wa​), and thus does not go negative, as that would imply the wheel has turned 180°.

Our algorithm to this point brings up a problem. If our control input quickly changes from, for
example, moving entirely forward to moving backward, our wheel pods need to turn all the way
around in order to execute the new command. Given that we’re working with motors that can go full
power forward or backward, that’s an inefficient thing to do. Ideally, we’d just flip the motor into
reverse and move on.

In order to solve this problem, we implement what we call ​inversion awareness​. If we assume we
know the wheel’s current azimuth angle, and we’ve calculated the azimuth we need, we can check if
we’d need to “flip” our module or not. If we would, we can just invert the speed output, readjust
where our azimuth is headed, and continue on our way. We’ll implement this in a bit.

Power to the ground (Speed and Azimuth drivers)
Finally, we’re at the point where we can get things moving. We have the parameters we want, a set
of wheel speeds and angles, generated from our desired output, transformed to be oriented relative
to the field. Now we want to get our swerve modules to execute those commands. These next bits
of code can be considered analogous to drivers in a computer system - layers of code that handle
the nitty-gritty low-level communication and control while providing an abstracted interface for
control. In our case, we grouped azimuth and wheel speed into one module that we can use to set a
wheel’s target state.

ChimiSwerve White Paper 14

Azimuth

Azimuth control is accomplished using a proportional feedback controller sensing the angle of the
wheel with an absolute encoder. Depending on the specific encoder used, this may come in the
form of a degree value, a voltage, or an integer number of ticks. For our US Digital MA3 encoders,
the output is in the form of a 0-5V signal, with the full range representing 360° of rotation. In many
cases, the encoder housing cannot repeatably and precisely be oriented to the “correct” physical
position. This means that the reading of our encoder when our azimuth is straight forward (0°, the
wheel is straight) can be ​any​ value. As such, we’re going to have some offset value on a per-module
basis, and we’ll factor it into our calculations.

For our feedback controller, we need to calculate the error between our setpoint and position.
Because we’re working with angles and have a range of 0-360°, we need to use the ​remainder
function to make sure our error is calculated properly. We’ll also use this for incorporating our
offset. Assuming we have the angle we want for this wheel (wa), we can calculate our error:

ncoder ncoder.GetV alue() e w = E
zimuthAngle emainder(Encoder.GetV alue() heelAngleOf fset) a = r − w
zimuthError emainder(azimuthAngle a) a = r − w

Inversion Awareness

Using the Talon FX’s ​SetInverted ​method makes implementing inversion control very
straightforward. We simply “flip” our azimuth error to the other side.

;zimuthError zimuthPosition a a = a − w
f abs(azimuthError) 90 //assuming our angles are in degrees i > :

zimuthError zimuthError 80 gn(azimuthError) a = a − 1 * s
peedMotorController.SetInverted(true) S

lse e :
peedMotorController.SetInverted(false) S

2.2 Swerve in Auton

2.2a How It ​Should ​Work
We want to tell the robot to go to a coordinate on the field and face a specific direction when it gets
there. Sometimes we want the rotation to happen at different places along the route. Sometimes

ChimiSwerve White Paper 15

we want it to rotate first or last. Sometimes we even want the robot to travel around an obstacle.
The robot should switch modes as desired along the overall route to achieve the game objectives.
We used a case generator to give us each motion in the desired order and change states primarily
by sensors. The end result should be a robot that travels at the maximum controllable speed while
achieving the desired positions with maximum accuracy.

2.2b The Math Behind the ​Magic

One of the core differences when operating in autonomous mode is that the robot can’t receive
information about where it is from the driver, in the form of controls. Early on, we established that
we want to accurately and repeatably control our movements and actions. To do this, the robot
needs to know where it is at all times - or at least have a good guess. This is known as ​odometry
within the field of robotics. Without accurate odometry, we’re forced to use ​dead reckoning​, or
worse, time-based movements at approximate speeds.

In order to perform our odometry, we decided to use our wheel encoders combined with a
gyroscope. By performing the reverse of what we do in teleop, which is taking an intended output
pose​ and figuring out what each individual actuator should be doing to achieve that pose. Again, a
pose​ is simply a set of unique characteristics describing the robot’s position or motion at an instant
in time. By taking information about the velocity and direction of each wheel and combining it using
the kinematics we described in section 2.1, we can obtain an overall velocity of the robot in two
directions; this is referred to as Forward Kinematics, or FK. By integrating this over time (just
multiplying the velocity at this time with the time step of the controller), we can get our position.

Forward Kinematics (FK)

Of course, going from wheel encoders to overall velocity is not entirely straightforward. The
problem comes when we look at our information and desired results: we have eight variables, four
wheel speeds and four directions, and we want three outputs: the robot’s forward, sideways, and
rotational velocity. If you’re familiar with algebra, especially linear algebra, you might recognize that
this makes our system overdefined. We have more information than we need, and can’t obtain an
exact analytic solution. There’s a couple ways to solve this. By ​setting up the exact equations and
putting them into a computer algebra system​, or by assembling the equations in a matrix-vector
format and using a linear equation solver, we can obtain a “best-fit” to the system.

However, this sort of inexact fitting can be difficult to implement, often requiring inclusion of extra
libraries. Due to the time sensitivity of the season, we chose to take a simplified approach. ​Courtesy
of Kyle Lanman of team 2841, we adapted an algorithm​ that averages variables until we get from
eight down to the three we need. While we expect this to be less accurate than more advanced
methods, we found it to be remarkably accurate after calibration. As long as wheel speeds and

ChimiSwerve White Paper 16

https://en.wikipedia.org/wiki/Odometry
https://en.wikipedia.org/wiki/Dead_reckoning
https://www.chiefdelphi.com/t/paper-4-wheel-independent-drive-independent-steering-swerve/107383
https://www.chiefdelphi.com/t/paper-4-wheel-independent-drive-independent-steering-swerve/107383
https://www.chiefdelphi.com/t/calculating-odometry-of-a-swerve-drive/160043/6
https://www.chiefdelphi.com/t/calculating-odometry-of-a-swerve-drive/160043/6

acceleration are kept below the point where they’d slip under normal conditions, this proves to be a
suitable odometry method for the limitations of the 15 second autonomous period, especially when
combined with other sensors to “close the loop” on navigation.

In this formulation of forward kinematics, we start from a position where we assume we know our
wheel speeds and wheel angles; call them , , , and so on, with F/R and L/R agains w FR s w FL aw RL
representing front/rear and left/right. Using motors that have a built in encoder, such as CTRE
Falcon 500s or REV Neos, is advantageous for determining wheel speed.

We do need to make sure we’ve consistent, physically meaningful values for our wheel speeds.
Whether we’re using encoders built into the motor or ones installed manually, they’re likely putting
out some counter of ticks, or count of revolutions, or some speed of ticks/second or
revolutions/second. We’ll need to use this in combination with our drivetrain reduction and wheel
diameter to get some conversion rate, and thus be able to get our wheel speeds in units of distance
per time, like in/sec, ft/sec, or m/sec.

We can first calculate A, B, C, and D values from our wheelspeeds and angles, but this time, we’re
going to calculate them for each wheel. These will be in units of velocity (distance per me), as we’re
simply multiplying our wheel speed (which has those units) by an angle component.

in(wa) s BFL = s FL * w FL os(wa) s DFL = c FL * w FL
in(wa) s BFR = s FR * w FR os(wa) s CFR = c FR * w FR
in(wa) s ARL = s RL * w RL os(wa) s DRL = c RL * w RL
in(wa) s ARR = s RR * w RR os(wa) s CRR = c FR * w RR

Well that wasn’t much help with simplifying our variables! In order to make this more reasonable,
we’re going to do some averaging. For each value of A, B, C, and D, we’re going to take the two
values we have, and average them. These averaged values will still have units of velocity, as they’re
just averaging two other velocity values.

A)/2 A = (RR + ARL
B)/2 B = (FL + AFR
C)/2 C = (FR + CRR
D)/2 D = (FL + DRL

Excellent, that’s brought our complexity down some. Now we need to find our rotational velocity, or
ROT. For this, we need physically accurate measurements of what we earlier defined as the length
and width of our wheelbase, L and W. Then, we’ll calculate the possible rotational velocity from our
knowledge about the front/back (A/B) and left/right (C/D) velocities, and average those again to get
a single value. Note that it’s also possible to get this ROT value (which should be in radians/second)
from a gyroscope, which we should already have on our robot so we can drive field-centric.

ChimiSwerve White Paper 17

B)/L ROT 1 = (− A
C)/W ROT 2 = (− D

OT ROT)/2 R = (1 + ROT 2

From here, we’re simply going to incorporate this with our geometry and A, B, C, D values to obtain
(again) two values each for forward and strafe velocities, and average them to get our final
estimates of forward and strafe speed.

ROT L/2) FWD1 = * (+ A
OT L/2) FWD2 = − R * (+ B

WD FWD)/2 F = (1 + FWD2

ROT W /2) STR1 = * (+ C
OT W /2) STR2 = − R * (+ D

TR STR)/2 S = (1 + STR2

Great! Now we’ve got something to work with. If we want our distance values to be ​useful​, though,
these velocities should be transformed so they’re field-centric. Back to our trusty field centric
transformation, we’ll again need our angle relative to the field, usually provided by a gyroscope.

WD FWD os(θ) TR in(θ)F new = * c + S * s
TR STR os(θ) WD in(θ)S new = * c − F * s

Odometry

From there, we can now figure out how fast we’re actually going along the field - pretty nifty! To get
to a position, we just need to ​integrate​ these over time. This is as simple as initializing a timer and
comparing its value at the current loop run to its value in the previous run to determine our
timestep​. For most robot code, this timestep is somewhere around 0.020 seconds, or 20
milliseconds; however, this is only a nominal value, and it can vary up and down (mostly up)
depending on the behavior of the robot’s code. In any case, we can take this timestep and our speed
and integrate it into an accumulator value to get our position relative to where we started counting.

imeStep oopT imer.Get() astT ime t = L − l
ositionAlongF ield ositionAlongF ield WD imeStep p = p + F * t
ositionAcrossF ield ositionAcrossF ield TR imeStep p = p + S * t

We’re calling our axis associated with strafing ​along​ and our axis associated with moving forward or
back ​across. ​This turned out to facilitate communication within our team more easily than axis
conventions like ​x/y/z.

ChimiSwerve White Paper 18

We now have our odometry. When using it in autonomous routines, we reset this value to zero at the
start, and consider our coordinates relative to where the robot starts. This means robot positioning
is very important, as any error will be carried through the odometry.

When you add the change every cycle, you always know where that wheel is. The same is done for
the other 3 wheels. We use that information to find the center of the robot. The direction that the
robot is facing could also be determined in the same manner, but we chose to use our gyros for
that. We only store the current position of the center of the robot. We do , however, send that
position to the dashboard and record the data there. We are able to graph out the position that the
robot reported and impose it over a map of the field to allow us to make improvements to our
autons even without having access to the robot.

The next part of the puzzle is to tell the robot where to go next. We reverse the tracking process to
instruct each wheel on where to go next. We input the desired x,y coordinate into the subroutine.
The angle that each wheel needs to face is calculated. The angle will be the same for all wheels
unless the robot is going to spin while moving. If the robot will be changing heading while moving,
the amount of turn correction will be factored in causing the wheels to face different directions and
have different relative speeds until the spin portion is achieved. We use a positioning loop to
assign the wheel speed. We are only using kP * error. We can change states by several different
criteria. We might use an achieved distance, an intake sensor, or a targeting feedback to tell the
robot that it is done with that task. The robot then moves on to the next task.

Calibration

If we used our nominal wheel diameters and gear ratios, these values should be pretty close to
real-world values, but they probably won’t be perfect. We’ll want to calibrate our overall speeds by
applying a multiplier. This calibration can be as simple as marking off a set distance (the longer the
better) and driving the robot across this distance, keeping it as straight as possible. Once the
distance is reached, the reported distance value can be compared with the actual distance value
and ratioed to produce a correction factor - actual distance over reported distance. This can also
be used to account for wheel wear, which changes the effective wheel diameter and can cause
inaccurate distance measurements when not accounted for.

2.3 Integrating Other PIDs into Swerve
Swerve is really cool on its own, but you know what’s even better? MORE FLEXIBLE CONTROLS!
“But isn’t field-centric good enough?” some may ask.
In return we ask, ”Do you want to be the very best that no one ever was?”

ChimiSwerve White Paper 19

Let’s get down to business. Swerve enables such freedom of motion, it's a waste to not utilize it for
your advantage as much as possible. If done successfully, your robot will perform at a new level.

Not convinced yet? Think about it this way. The more control the driver has, the more natural
driving will feel. The more comfortable the driver is, the better they will play. The better they play,
the better your whole team will do. That is why we are so hard-set on having solid controls. We want
to perform well. And we want you to as well.

2.3a PIDs (PIDFs) Loops: A Primer

Why Do We Even Need Fancy Control Loops?
Control​. We are completely serious. Loops enable us to finely control practically any part of the
robot. Yes, you can just set power to a motor with a joystick. That is fine for some mechanisms. If
you haven’t even tried doing this yet, STOP RIGHT NOW! Go and make your robot move! Start simple,
then build your way up to complex controls.

Other mechanisms are very difficult to manage. Anything from battery voltage, to wheel wear can
impact how effectively the mechanism is operated. No matter what, there will always be physical
variance affecting robots. Never ever assume you will be driving your robot under certain, specific
conditions. Nothing is ever perfect, even in auton!

We are able to compensate for these differences using control loops. Yes, we also use some
awesome sensors to help us. However, control loops are the heart of reliable systems. Using a ​well
implemented​ ​PID​ or ​PIDF​ system will produce smooth, repeatable movements.

It is important to also note that there are other types of control loops. Compared to the others, ​PID
and ​PIDF​ are arguably the simplest and universal. That is why we use them wherever we can.

What Do These Letters Even Mean!?
These values are technically called ​gains​. They help scale the ​error​ (the difference between our
target state​, “where we want to be”,​ ​and our ​current state​, “where we are right now”) in different
ways. This ends up being the ​correction​ we apply to the motor(s). For a more detailed explanation,
please see ​this article​. Below we will talk about each ​gain​.

NOTE​: These ​gains ​can be used together in different combinations.
NOTE:​ These sample calculations are not tuned PID loops. These are simply examples to show how
the numbers work.

P - Proportion

We multiply the ​error​ by ​P​.
 rror targetState currentState; e = −

ChimiSwerve White Paper 20

https://en.wikipedia.org/wiki/PID_controller#Control_loop_example

orrection error P ; c = * k

All we are doing is converting the error into a useful number (e.g. a motor controller input).

Here is a simple numerical example:

rror targetState currentState; e = −
 2000 1000; = −
orrection error P ; c = * k
 1000 .0001; = * 0
 0.1; =

In this scenario, our ​correction​ is 10% motor output.

I - Integral

We continuously accumulate the ​error​ when we are very close to our ​target​ (within an
IZone​). Then, we scale the ​integral​ by the ​responseTime​. Finally, we multiply this number by
I ​ and add it into the ​correction ​calculation.

f ((abs(error) Zone) integral = error; i < I +
f (abs(integral) ILimit) integral = responseT ime; i > *
orrection error P integral kI; c = * k + *

 All we are doing is allowing a little more power to be applied at the end.

The integral cannot be stored as a local variable​. It must be external to your ​PID ​function. We
need to have a record of all previous tiny ​error​ values, otherwise the ​integral​ will not be
large enough to do anything. Because of this, ​you have to reset the integral before using
your PID​ again​.

Additionally,​ it is very important that you use an ILimit to restrict how strong the integral can
get​. Without this, the ​integral​ can cause ​overrun​ and/or ​oscillation​.

We can creep right to our target at an adjustable rate using ​responseTime​. Slower systems
have smaller values, while faster systems have large values.

Depending on your system, you might not need to incorporate the ​integral​.

Here is a simple numerical example:

rror targetState currentState; e = −

ChimiSwerve White Paper 21

 2000 1991; = −
f ((abs(error) IZone) integral = error; i < +

f ((abs(9 0) integral = 9; i < 1 +
f (abs(integral) ILimit) integral = responseT ime; i > *

f (abs(9) 100) integral = 0.02; i > *
orrection error P integral kI; c = * k + *
 9 .0001 0.002; = * 0 + 9 *
 0.0009 .018 ; = + 0
 0.0189 ; =

In this scenario, our ​correction​ is 1.89% motor output. Yes, this is a very small
number. However, after a few more cycles the ​integral ​will make ​correction ​grow
strong enough to creep the system right to the ​target state​.

D - Derivative

We take the difference between our ​current error ​and our ​previous error​ divided by our
responseTime​. Then, we add the ​derivative ​into the ​correction ​equation.

erivative (error – prevError) / responseT ime; d =
orrection error P derivative kD; c = * k + *

Think of this like we’re slowly using the brakes instead of stomping on them. The derivative
helps us smooth out our movements.

We can also think about this in graphical terms. We are finding the slope of the ​correction
line. The slope tells us what the ​correction ​should look like in the near future. This helps to
smooth out the ​correction​. As a result, ​derivatives ​can eliminate both ​overrun​ and
oscillation​.

Unfortunately, control loops using ​derivatives​ are highly susceptible to ​noise ​issues.
Sudden jumps in values will cause unexpected behaviors.

Depending on your system, you might not need to incorporate the ​derivative​.

Here is a simple numerical example:

rror targetState currentState; e = −
 2000 1000; = −
erivative (error – prevError) / responseT ime; d =

 (1000 – 1010) / 0.02 00; = = − 5

ChimiSwerve White Paper 22

orrection error P derivative kD; c = * k + *
 1000 .0001 − 00 0.001; = * 0 + 5 *
 0.1 .5; = − 0
 .4; = − 0

In this scenario, our ​correction​ is 40% reverse motor output.

F - Feed Forward

We multiply the ​target ​by ​feed forward​. Then, we add that into the existing ​correction
equation. All we are doing is providing the system an initial boost in power based on our
existing knowledge of the system.

orrection error P feedForward kF ; c = * k + *

Here is another way of thinking about it. We are supplying a known starting value to get us
into our operating range. Think about a shooter wheel. If we want the wheel to run at a
constant velocity, we already know how fast we want it to go. The ​feed forward ​gives our
system a boost, so the rest of the ​PID​ doesn’t need to work as hard.

Other Control Loop Terms

Open Loops

Dead reckoning​: controlling the system based on ​time​. There is no ​feedback ​from ​sensors​,
so the system is not able to ​correct ​for changing conditions. This method should be used as
a starting point for building ​closed loops​.

Closed Loops

PID(F)​ loops. Based on ​feedback ​we get from sensors, our system is able to automatically
correct​ for changing conditions.

Internal Loops (our version)

PID(F) ​loops that are built into the motor controller. The ​feedback sensor​ is directly
communicating with the motor controller. ​Use this whenever possible. ​They react quicker
than ​external loops​ because the motor controller has a faster running clock than the
RoboRIO (typically 1 ms vs. 50 ms).

External Loops (our version)

PID(F) ​loops that run on the RoboRIO. The ​feedback sensor​ is directly communicating with
the RoboRIO. ​Use this when you have to.​ They react slower than ​internal loops​ because the

ChimiSwerve White Paper 23

RoboRIO has a slower running clock than the motor controller (50 ms vs. typically 1 ms).
Also, you are responsible for writing the control loop yourself.

Positioning Loops

PID(F) ​loops that have a ​target positio​n in mind. Using an encoder (or other distance
measurement device), they allow you to achieve a certain distance in a timely, consistent
manner.

Velocity Loops

PID(F) ​loops that have a ​target velocity ​in mind. Using an encoder (or other velocity
measurement device), they allow you to achieve a certain speed in a timely, consistent
manner.

“Inside Outside” Loops (our definition)

Using an ​external position loop​ to set an ​internal velocity loop​. The encoder (or other
distance sensor) communicates with the RoboRIO, while another encoder (or other velocity
sensor) communicates with the motor controller. ​Use this for ultimate control IF you are
experienced. ​ It can negate variations in battery levels.

General Tips for Tuning Control Loops
Good ole “trial and error”. The cool kids call it “The WAG Method”: Wild ______ Guess. (Use your
imagination.)

Tuning control loops can be a very time-intensive process. It is a necessary step though. You have
to customize the ​PID​ or ​PIDF​ to fit your robot. Each robot is different, so no two ​PIDs​ are alike. Even
practice and competition robots might need to have slightly different ​gains​. This is primarily due to
weight differences between them.

See ​this article​ by CTRE for more information about tuning control loops.

Start with kP

NOTE:​ ​If the ​control loop ​for your system is going to maintain a certain ​setpoint​, then it is a
good idea to start with ​kF​, ​and come back to this step.

Make a logical guess based on the units of measurement you are using and your output
units. Let’s think about a simple ​positioning loop​. Let’s say our encoder reads 100 ticks/inch
and we are using percent output. Approximately how much power do we want applied to at
a certain distance? We already have an idea of how far we want to move: we know the field
measurements. So, let’s say we want this ​positioning loop​ to give 100% output when we are
10 ft away. This is what the math would look like:

ChimiSwerve White Paper 24

https://phoenix-documentation.readthedocs.io/en/latest/ch16_ClosedLoop.html#position-closed-loop-control-mode

orrection error P ; c = * k
 120000 P ; 1 = * k
P 1/12000 0.000833; k = =

Using that ​kP​, we can do some quick math to see how this behaves when we are 3 ft from
our ​target ​distance.

orrection error P ; c = * k
orrection 3600 .0000833; c = * 0
orrection .299 30%; c = 0 =

Based on this, it seems we are within our operating range. Onward to tuning time!

It is recommended you double your ​kP​ value until you see ​oscillation​, or what we call
“wagging”​. If your robot starts shimmying and shaking, that means your ​gain​ is too high. Try
going 75% of the previous value. If that looks good, continue increasing the ​gain ​slightly
until you see more ​oscillation​. Once you see more ​oscillation​, lower the ​gain​ a tiny bit.

Now that we are content with our ​gain​, we need to make sure it works throughout our
entire operating range.We have to test the control loop under different conditions. In our
earlier example, we would need to physically test our ​positioning loop​ at different
distances. We want the robot to always achieve its distance, no matter the distance (within
reason). To perform this test, we set up a range ​target​ distances, both traveling forwards
and backwards. ​DO NOT OVERLOOK THIS STEP! ​Please don’t ever assume your loop will work
correctly in both directions.

If a system is traveling too quickly in certain scenarios, it may be a good idea to apply a
correction cap​. This allows us to keep our tuned ​gain​ without sacrificing control due to
momentum.

We want to maximize the responsiveness of our system. When it is on the edge of
oscillation​, the ​gain ​is just right. That is why we go through this process. Just calculating a
value alone is not enough. You have to test and tweak the ​gain​ to fit your system.

Next is kD

Now that we are happy with our ​kP​, we can start tuning ​kD​.
NOTE:​ Depending on how your mechanism is designed and the type of ​control loop​, you
might not need to use ​kD​. Brushless motors themselves behave much differently from
brushed motors. We have found that ​control loops​ using brushless motors and ​kD ​are much
harder to tune. They have a lot more torque, making the ​derivative​ difficult to control.

It is recommended that you start the ​kD ​at 10 times ​kP​. In our previous example, that would
mean:

ChimiSwerve White Paper 25

D 10 kP 10 0.0000833 0.000833; k = * = * =
erivative (error – prevError) / responseT ime; d =
 (3600 – 3620) / 0.02 00; = = − 1
orrection error P derivative kD; c = * k + *
 3600 .0000833 00 0.000833; = * 0 + − 1 *
 0.299 0.0833 0.217 22%; = − = =

Based on this, it seems we are within our operating range. Onward to tuning time!

It is recommended you double your ​kD​ value until you see you come short of your ​target​. If
your mechanism ​overshoots ​(or travels past your ​target​), that means your ​gain​ is too low. If
it stops abruptly, that means your ​gain​ is too high. Try going 75% of the previous value. If
that looks good, continue increasing the ​gain ​slightly until you see it come short again.
Once you see more of this, lower the ​gain​ a tiny bit.

You may want to increase your ​kP slightly​ to maximize the speed of your system. Ideally,
you want to find the balance between speed and accuracy with any ​control loop​.

NOTE:​ The ​derivative​ is not intended to get you exactly to your ​target​; that’s what the
integral​ is for. Instead, we use ​kD ​to help eliminate ​overshooting ​the ​target​.

Now that we are content with our ​gain​, we need to make sure it works throughout our
entire operating range.We have to test the control loop under different conditions. In our
earlier example, we would need to physically test our ​positioning loop​ at different
distances. We want the robot to always achieve its distance, no matter the distance (within
reason). To perform this test, we set up a range ​target​ distances, both traveling forwards
and backwards. ​DO NOT OVERLOOK THIS STEP! ​Please don’t ever assume your loop will work
correctly in both directions.

We want to maximize the responsiveness of our system. When it is just shy of the ​target​,
the ​gain ​is just right. That is why we go through this process. Just calculating a value alone
is not enough. You have to test and tweak the ​gain​ to fit your system.

Then kI

Now that we are happy with our ​kD​, we can start tuning ​kI​.
NOTE:​ Depending on how your mechanism is designed and the type of ​control loop​, you
might not need to use ​kI​.

It is recommended that you start the ​kI ​with a fairly small value. We only want the ​integral
to be active when we are extremely close to our target. So, let's look at an example without
the ​integral​, then with it:

ChimiSwerve White Paper 26

erivative (error – prevError) / responseT ime; d =
 (9 – 10) / 0.02 0; = = − 5
orrection error P derivative kD; c = * k + *
 9 .000833 0 0.000833; = * 0 + − 5 *
 0.0075 0.0417 .0342 %; = − = − 0 = − 3

erivative (error – prevError) / responseT ime; d =
 (9 – 10) / 0.02 0; = = − 5
f ((abs(error) IZone) integral = error; i < +

f ((abs(9 0) integral = 9; i < 1 +
f (abs(integral) ILimit) integral = responseT ime; i > *

f (abs(9) 100) integral = 0.02; i > *
orrection error P integral I derivative kD; c = * k + * k + *

 9 .000833 9 .005 0 0.000833;= * 0 + * 0 + − 5 *
 0.0075 0.045 .0417 0.09415 9%;= + − 0 = =

See the difference? Without ​kI​, we are stuck just short of our ​target​. With ​kI​, we will
accumulate enough ​correction​ to get right to our ​target​.
Based on this, it seems we are within our operating range. Onward to tuning time!

It is recommended you double your ​kI​ value until you see ​oscillation​, or what we call
“wagging”​. If your robot starts shimmying and shaking, that means your ​gain​ is too high. Try
going 75% of the previous value. If that looks good, continue increasing the ​gain ​slightly
until you see more ​oscillation​. Once you see more ​oscillation​, lower the ​gain​ a tiny bit.

Don’t forget that you can also play with ​IZone ​and ​ILimit​. These values can help create a
strong, yet controlled correction right to the ​target​.

Now that we are content with our ​gain​, we need to make sure it works throughout our
entire operating range.We have to test the control loop under different conditions. In our
earlier example, we would need to physically test our ​positioning loop​ at different
distances. We want the robot to always achieve its distance, no matter the distance (within
reason). To perform this test, we set up a range ​target​ distances, both traveling forwards
and backwards. ​DO NOT OVERLOOK THIS STEP! ​Please don’t ever assume your loop will work
correctly in both directions.

We want to maximize the responsiveness of our system. When it is on the edge of
oscillation​, the ​gain ​is just right. That is why we go through this process. Just calculating a
value alone is not enough. You have to test and tweak the ​gain​ to fit your system.

ChimiSwerve White Paper 27

What about kF?

NOTE:​ To use ​feedforward ​effectively​ ​you have to have a good idea of how your system will
behave ahead of time.

kF​ is the simplest ​gain​ to tune. You just need to find a value that gets you right into your
operating range. ​Feedforward​ doesn’t perform any ​corrections​, rather it moves your
starting point from 0 to “whatever you want”. This makes it much easier to tune the rest of
the ​PID​. Having a tighter range to ​correct​ results in faster reactions and finer control.

Once your ​feedforward​ has your system off to a good start, then you can return to tuning
kP​.

2.3b Goal Centric (Starring the Limelight)
In this section, we shall discuss integrating the ​Limelight​ ​with swerve. We are assuming that you
have some knowledge about the ​Limelight​. If you are using another form of vision processing, the
concepts we will discuss should still be relevant.

Vision Targeting

Essentials

Almost all vision processing software should give you two very useful variables: ​tx​ & ​ty​. Below is the
description of these variables from the ​Limelight ​documentation​.

In the simplest targeting implementations, all you need is ​tx​. More complex targeting
implementations will also utilize ​ty​.

ChimiSwerve White Paper 28

https://docs.limelightvision.io/en/latest/getting_started.html
https://docs.limelightvision.io/en/latest/networktables_api.html
https://docs.limelightvision.io/en/latest/networktables_api.html

In the left diagram, we show how the ​Limelight ​reports ​tx ​values. The black dotted line shows us the
y-axis, where ​tx ​= 0. We can see that ​tx ​tells us how far LEFT (-​tx ​) or RIGHT (+​tx​) the target is from
the center of the ​Limelight.

In the right diagram, we show how the ​Limelight ​reports ​ty​ values. The black dotted line shows us
the x-axis, where ​ty ​= 0. We can see that ​ty ​tells us how far UP (+​ty ​) or DOWN (-​ty​) the target is from
the center of the ​Limelight.

Easy Mode

The simplest vision targeting ​PID ​you can do only uses ​tx​. Basically, you just want to turn towards
the goal. This is done by applying a calculated correction in the opposite direction of ​tx​. Here is
what your targeting ​PID​ function might look like:

ouble limelightXP ID(double tx){ d

ouble kP 0.008; d =
ouble correction tx P ; d = * k
eturn correction; r

}

The ​kP​ should convert the ​error​ into a number you can use later in your method to move the
drivetrain (​teleop​ or ​auton​).
Unfortunately, this implementation isn’t perfect. Oftentimes, the robot doesn’t have enough power
to correct when it is fairly close to the goal. The best solution we found is in the next section.

Advanced Mode

A more advanced version of the vision targeting ​PID​ implements a ​minimum correction​ and an ​error
deadzone​. Just like the previous one, ​tx ​is used the same way. However, the ​minimum correction
allows the robot to creep into place and the ​error deadzone​ allows the robot to stop when it's close
enough. Here is what your targeting ​PID​ function might look like:

ouble limelightXP ID(double tx){ d

ouble kP 0.008; d =
ouble correctionMin 0.003; d =
ouble deadZone 0.05; d =
ouble correction tx P ; d = * k
f (correction orrectionMin) correction copysignf (correctionMin, correction); i < c =
f (abs(tx) deadZone) correction 0; i < =
eturn correction; r

ChimiSwerve White Paper 29

}

Hard Mode

A harder version of the vision targeting ​PID​ adds an ​integral​ into the mix. Just like the previous
approaches,9 ​tx ​is used the same way. However, the ​integral​ adds a little power at the end to help
the robot crawl right into proper positioning. The ​integral​ replaces the ​minimum correction ​seen in
the ​previous ​section. Here is what your targeting ​PID​ function might look like:

ouble integral 0; d =
ouble limelightXP ID(double tx){ d

ouble kP 0.008; d =
ouble deadZone 0.05; d =
ouble kI 0.001; d =
ouble IZone 4.0; d =
ouble ILimit 1000.0; d =
f (abs(tx) Zone) integral = tx; i < I +
f (abs(integral) ILimit) integral 600 integral/abs(integral); i > = *
ouble correction tx P integral kI; d = * k + *
f (abs(tx) deadZone) correction 0; i < =
eturn correction; r

}

Caution​: tuning the ​integral ​can be extremely difficult. From our own experience taking the
advanced ​approach is much easier and has very similar results to this implementation.

Expert Mode

A more complex version of the vision targeting ​PID​ utilizes both ​tx​ & ​ty​. Just like the previous ones,
tx ​is used the same way. However, now ​ty​ is used to calculate the distance from the goal. Depending
on the year and setup of your robot, your use of ​ty ​can vary. We will briefly discuss a few of the most
common ones.

Because ​ty​ gives us the vertical offset (in degrees) we are away from the target, we can use that to
achieve a specific position. (For the purposes of simplicity, we are using the pseudocode from ​this
example.) Here is what your targeting ​PID​ function might look like:

ouble limelightXP ID(double tx){ d

ouble kP 0.008; d =
ouble correctionMin 0.003; d =

ChimiSwerve White Paper 30

ouble deadZone 0.05; d =
ouble correction tx P ; d = * k
f (correction orrectionMin) correction copysignf (correctionMin, correction); i < c =
f (abs(tx) deadZone) correction 0; i < =
eturn correction; r

}

ouble limelightY P ID(double ty){ d

ouble kP 0.008; d =
ouble correctionMin 0.003; d =
ouble deadZone 0.05; d =
ouble correction ty P ; d = * k
f (correction orrectionMin) correction copysignf (correctionMin, correction); i < c =
f (abs(tx) deadZone) correction 0; i < =
eturn correction; r

}

Together, these two PIDs enable your robot to turn towards and line up to the target, while driving to
a desired distance away from the target. You can change the distance from target position by
adding an offset to ​ty​ (​ty - 3)​.

Another use for ​ty​ is to use the “distance” to enhance your scoring mechanism. For example, you
can change the speed of a shooter wheel based off of your distance, or the angle of a shooter hood.
You can adjust the height of an elevator based on the vertical offset, or even disable scoring until
your robot is close enough to place the game piece. The use of ​ty​ is only limited by your
imagination. Because there are so many possibilities, we will not show any pseudocode.

Goal-Centric

Introduction

In goal centric, instead of the driver joysticks referencing the field (as in field-centric control), they
reference a specific goal or target. In the 2020 season, we specifically targeted the Upper Power
Port. In the 2019 season, we targeted the Loading Station, Cargo Ship, and Rocket for Hatch
placement. Essentially, you want to target any major field element to make it easier and faster to
score. If implemented properly, the robot will naturally face the goal and strafe in an arc around it.

How It’s Done

If you are using just ​tx​ to line up with the goal, here is what your code may look like:
ove(fwd, ot imelightXP ID(tx), tr); m r + l s

ChimiSwerve White Paper 31

Notice that the ​tx ​PID​ is added to ​rotate​. We just want our robot to look at the target. So, all we have
to do is turn toward the goal. We are only aiming using the ​Limelight​, not moving.

If you are using both ​tx​ and ​ty​ to line up with the goal, here is what your code may look like:
ove(fwd imelightY P ID(ty), ot imelightXP ID(tx), tr); m + l r + l s

In addition to ​tx​, notice that the ​ty ​PID​ is added to ​forward​. We want our robot to drive to a specific
location relative to the target. So, we have to drive toward/away from the goal. We are moving to a
set position, while looking at the target.

These functions must be called every cycle. The robot can’t properly correct invalid positioning
based on old data.

2.3c Game Piece Centric (Starring the Pixy)

Introduction

In game piece centric, the rotate input from the joystick is overridden by the Pixy. The driver is free
to move the robot in any direction while the Pixy keeps the robot pointed at a ball. This makes
picking up balls on the far side of the field a little easier. Since we have a Pixy on the front intake
and the rear intake, the driver has to select which one to use for this mode.

Here is a ​video ​of our 2020 robot demonstrating ​game piece centric​ control.

How It’s Done

There are two signals that we receive from the Pixy. There is a digital signal that tells us if a target
is within range. In this case a target is a yellow ball (Power Cell). There is an analog signal that gives
us the location of the ball on one axis of the camera’s view. In this case the x or left to right axis.

The Pixy’s analog signal is from 0 to 3.3 volts with 0 being the leftmost view of the camera. We
determined the center of the camera’s view to be what we wanted to lock in on. We created a
positioning loop that took over the rotational control and calculated the error between the target
and the center of the camera. The error was used to calculate our desired yaw until the digital
signal showed no more target.

ouble pixyV oltageRange 3.3; //volts d =
ouble pixyHFOV 60; //degrees d =

ool pixyF rontSeesBall(){ b

eturn pixyF rontDigitalInput.Get(); r
}

ChimiSwerve White Paper 32

https://youtu.be/VP4emc-K57k?t=42

ouble pixyF rontAngle(){ d
eturn (((pixyF rontAnalogInput.GetAverageV oltage())/pixyV oltageRange) 0.5) pixyHFOV ; r − *

}

ouble pixyF rontCorrection (){ d

ouble pixyXkP 0.004; d =
eturn pixyF rontAngle() pixyXkP ; r *

}

In teleop

f (pixyF rontSeesBall()) { i

awCorrection pixyF rontCorrection(); y =
ot 0; r =

else{ }
toredY aw yaw; s =

}

ove(fwd, ot awCorrection , tr); m r + y s

We use the Pixy in a different manner in auton. We use it to determine our position relative to the
target ball to allow for automatic adjustment in the case of minor set up variances.

f (pixyF rontSeesBall() && (abs(pixyF rontAngle() goalY aw) 3.0)) { i + >

ove(0, yc, opysignf (0.1, pixyF rontAngle()), true); m − c
else{ }

ove(0, , , rue); m 0 0 t
}

In this case, we’ll use the Pixy to center ourselves on the game piece if we’re more than 3 degrees
off from it in either direction.

ChimiSwerve White Paper 33

2.3d Maintaining Your Heading (aka Not Spinning… aka Driving “Straight”) While
in Field Centric

Introduction
Driving “straight” isn’t as easy as you thought, is it? When we say “straight”, we mean moving without
unintentionally turning. We’ve all been there: “why is the robot steering left/right even though I’m
telling it to drive straight!?!” This is something we struggled with for a while too. ​Unfortunately,
there will always be physical variances between individual wheels or two sides of a drivetrain.​ There
will always be a need for a drive “straight” ​PID​.

When it comes to swerve, driving “straight” is more complicated. Instead of the robot driving
forward/backward at a specific ​heading/angle​, we want the robot to move in any direction without
spinning. ​The robot should always stay facing the same way, unless we tell it to rotate. When it
rotates, that angle will be our new heading to maintain.

Now things get even more interesting. How do we do this when we have other ​PID loops​ (i.e. ​goal
centric​, ​game piece centric​) occurring simultaneously? ​The robot should switch between goal centric,
game piece centric, and field centric seamlessly.

Not spinning isn’t as easy as you thought, is it? Don’t worry, we’re going to help as much as we can.

How It’s Done
You need to have a variable that stores your ​target heading​. Typically, we refer to ours as ​storedYaw​.
This variable must be updated every time you have a new ​angle ​you want to face.

In addition, you need to have a variable that stores your ​current heading​. Typically, we refer to ours
as ​yaw​. This variable must be updated every cycle with data from your ​gyro​.

Then, you have a simple rotation ​PID​ which might look like this:

ouble calcY awStraight(double targetAngle, ouble curentAngle, ouble kP){ d d d
ouble errorAngle remainderf ((targetAngle currentAngle), 360); d = −
ouble correction tx P ; d = * k
eturn correction; r

}

You would call this function in ​Teleop​ like so:

f (rot ! 0){ i =

ChimiSwerve White Paper 34

toredY aw aw; s = y
else{ }

f (abs(speed) 0 || abs(strafe) 0){ i > >
yawCorrection alcY awStraight(storedY aw, yaw, .004); = c 0

}
}

ove(fwd, ot awCorrection , tr); m r + y s

Essentially, we want to keep facing the same ​angle ​whenever we aren’t rotating. When we don’t
want to spin, we want to maintain our ​heading ​while we move. However, we don’t want to ​PID ​our
angle if we aren’t trying to move (due to safety concerns).
To integrate this with other driving ​PID loops​, make sure that maintaining your heading is your
“default” scenario. ​Goal centric​ and ​game piece centric​ will modify your ​yawCorrection​ and
storedYaw ​(or equivalent variables) as needed.

3.0 Other Misc. Tips & Tricks

3.1 “Zero” Azimuth Position & Pre-Match Module Testing
In order to make sure that your robot is functioning properly, you have to check to make sure that
things remain in alignment. That includes making sure that the wheel rotation encoders stay true.
There are a couple of things that mechanically could go wrong and misalign the wheels, the encoder
could come loose, the gear driving the encoder could become damaged and a number of other
things. To prevent these things from affecting our gameplay, we created a way to check our
azimuth.

We made a few attempts to make physical measurement tools to simplify checking if the wheels
were properly aligned. After several complex procedures, we developed a simple way to confirm
that the wheels are parallel to the frame. We tip the robot on the side and put a level on each wheel
after we told the wheels to point to the front.

We added a button in Test Mode that would tell all the wheels to face zero degrees relative to the
robot. We also added a button to slowly rotate the wheels. That procedure gives us several points of
feedback. We can observe the speed at which the wheels rotate relative to each other. We can
listen for sounds that indicate mechanical changes. We can watch for smooth motion. It also allows
us to move the wheels from the front-facing position then push the button to face front again.

ChimiSwerve White Paper 35

Another part of the prematch test is running the modules in Teleop Mode with the wheels off the
floor. That allows us to check for any mechanical changes to the drive motor functionality in
addition to the spin function.

3.2 Protect Your Reset Buttons!
Reset Buttons: a necessary evil. They should only be pressed when you want them to be pressed,
right?! Well, it's not something people think about as often as they should. Trust us, we fell into this
trap too.

When we got our 2020 robot on the ground, our driver found a cool trick that made his forward
direction become his backward direction. Our electronics panel is on the bottom of this robot in a
very, very, very compact space. Our two gyros have somewhat open reset buttons that can ​easily ​be
touched by anything. When our driver went over the shield generator, the reset button would be
pressed and field centric is out the window. Every time it reset, he gave the programming team a
nice little grin and said “front isn’t front anymore.” We couldn’t understand why the gyros were not
working and would power cycle and reset. Finally we turned the robot upside down and found that a
cable was leaning directly on the reset button of our NavBoard.

3.3 Document Your CANbus Network Topology
Despite the CANbus allowing devices to be connected in almost any order, it is still very important
to know the network layout. Save yourself a lot of pain and suffering debugging your electronics!
Here are some tips we have to do this effectively:

1. Note the type, ID, and name for each device.
2. Trace the connections starting from the RoboRio to the PDP (or whatever the “end” of your

CANbus is).
3. Record how each device is connected in the network in the same order you are tracing them.

Below is a simple example:

ChimiSwerve White Paper 36

Name ID Device Type Connection In Connection Out

ShooterL 1 VictorSPX RoboRIO ArmL

ArmL 2 VictorSPX ShooterL ShooterR

ShooterR 3 TalonSRX ArmL ArmR

ArmR 4 TalonSRX ShooterR IntakeL

IntakeL 5 SparkMax ArmR IntakeR

IntakeR 6 SparkMax IntakeL ModRotate1

ModRotate1 7 TalonFX IntakeR ModDrive1

ModDrive1 8 TalonFX ModRotate1 PDP

By methodically writing down this information, it will be​ infinitely easier​ and ​faster ​to:

a. Program these electronics on the robot.
b. Diagnose problematic devices & replace them.
c. Fix broken wires & connections.

Please, do this simple thing. We didn’t until we were forced to. That was a huge ​mistake​. The day
before our first competition in 2020, one of our motor controllers died. We spent at least 10 hours
chasing the problem. We didn’t start down the right path until we knew exactly what the CAN

ChimiSwerve White Paper 37

network looked like. Seriously, this helps make debugging significantly faster! Don’t let your entire
electronics board falling out of your robot stop you from making it to your next match. We didn’t; at
least, not in 2020.

3.4 Know Your Electronics
Options, options, options… Electronics are all the bits and pieces of hardware that we interface
with through programming. We are always searching for that one sensor that will be even better
than the previous one. Maybe you found a new thingy that does the “ooh yeah” (aka what you really
need)! ​Now you have to reliably control it.​ Typically, we end up using less than 10 percent of the
functions available of some of our electronics. That could be a motor controller, a gyro, a lidar, a
proximity sensor, or a vision processor. You have to determine the capabilities and limitations of
the electronics. It starts with the mandatory electronics: the ​Roborio​, the ​PDP​, and the ​VRM​. In
addition to the minimal operations, they all have programming in them that may be helpful. The
error messages that they output could help you reduce any lag time. The diagnostic capabilities
may allow you to prevent brownouts.

You should also have a variety of sensors on the robot. During the 2019 build season, we discovered
that a reflective line sensor could be also used to detect hatches. The sensor would reflect the
proper amount of light to signal the edge was within 24 inches. With that sensor at the correct
angle, we could tell if we were in possession of a hatch. Feel free to explore alternate uses. We have
used a variety of digital sensors to indicate the location of different things over the years. We also
use analog sensors to give us useful feedback. Lidar and vision processing can give us distance. An
accelerometer and gyroscope can tell you if you have run into something. A pressure sensor can tell
you how much air is in the pneumatics. An encoder can tell you a position or a speed. ​Knowing the
capabilities of your electronics is the only way to maximize performance.

Knowing the limitations of the electronics is a must for reliable programming performance​. A simple
example of this is knowing that most CTRE devices have clearable error codes. Sometimes the
“sticky faults” will prevent the system from working at full speed because the expected data is not
arriving quickly enough. Testing is often necessary to acquire the limitations of a sensor, encoder,
or subprocessor. You will always need to know the point at which any feedback device is no longer
reliable. It could be a speed, a distance, or an angle.

3.5 Invest in Good Controllers… And You Should Interpolate
Let’s get real. Swerve feels AMAZING to drive. But, that’s only if you have an AMAZING controller.
“What do we mean by AMAZING,” you ask? It boils down to “non-sticky” joysticks. Minimal dead
zones. Want to make the robot do “victory spins” whilst driving at 45°? Your joysticks need to have a
full range of motion.

ChimiSwerve White Paper 38

This is an example of ideal radial dead zones. Realistically, no
controllers are perfect. But, AMAZING controllers are very
close. If you want to have even more natural feeling controls,
then you should implement radial dead zone interpolation.
Check out this website to learn more.
http://blog.hypersect.com/interpreting-analog-sticks/

If you want to test and/or configure your controller, you can
do so right in Windows 10. Check out this walkthrough for
more information:

https://www.howtogeek.com/241421/how-to-calibrate-your-gaming-controller-in-windows-10/

Makes sense right? To fully experience the epicness of swerve, you need to have quality inputs.
Swerve simply can’t be at its best if it's being driven with a poor controller.

3.6 Seriously, Implement Brownout Protection!
Brownout protection is very important with swerve, not only in auton but throughout the entire
match. If we were to brownout, we could lose both our gyros. Once the voltage comes into the range
of 6.3 to 6.8 volts our NavBoard would lose power as the 6 volt rail of the RoboRio turns off. In the
range 4.5 to 6.3 volts, all but the joystick communications to the RoboRio are lost. The PigeonIMU
can be powered by a Talon, therefore is more tolerable to brownout voltage conditions. The
PigeonIMU, when powered by a Talon, will not lose it’s telemetry until the voltage drops below 4.5
volts, at which time RoboRio shuts down. If the RoboRio shuts down, there will be no CANbus
communication until it reboots again.

Battery Voltage RoboRio PigeonIMU NavBoard

Fully charged - 6.8 Operates Normally Operates Normally Operates Normally

6.8 - 6.3 6 Volt Rail Shuts Off Operates Normally Loses Power

6.3 - 4.5 CANbus Shuts Off No Communication
(Still Operational)

Still Shut Off

4.5 and below Shuts Off Shuts Off Still Shut Off

There are two ways to best minimize your chances of brownouts. The first way (that is
multi-purpose) is ramprate. It prevents the motors from drawing maximum amperage immediately,

ChimiSwerve White Paper 39

http://blog.hypersect.com/interpreting-analog-sticks/
https://www.howtogeek.com/241421/how-to-calibrate-your-gaming-controller-in-windows-10/

by forcing a ‘ramp-up’ of the motor controller output voltage, averting brownouts. The other
purpose of ramprate is to keep from braking traction, by stopping the wheels from accelerating too
rapidly. The second way to prevent brownouts is using current limiting. We used Falcon500 with the
integrated Talon motor controller. Once we found the correct level to set the limiting at, it worked
flawlessly. We used this method for most of our motors, from shooter to our climber to our drive
train. On our shooter, current limiting worked extremely well because we could get it up to speed
quickly without drawing too much amperage and browning out.

3.7 Handling Gyro Fault Conditions

We have two gyros on our robot.​ In the event that one can’t be used, we are still able to navigate. It’s a
backup.​ We average both yaw readings together. If either one of the gyros goes down, the system
will use the reading from the other gyro. If both gyros go down, the system will switch to ​robot
centric​ mode until at least one gyro is regained.

We did program in a gyro reset function to account for this possibility, but it has not and should not be
needed in competition.​ This emergency gyro reset function is used to restore the robot’s heading to
0 degrees for “field centric” operation. There is a reason why this shouldn’t be relied on during a
match. If both gyros fail, you more than likely have bigger problems on your hands. Gyros don’t fail
“randomly” all the time. There is always a cause behind it. Resetting the gyros is not going to fix

ChimiSwerve White Paper 40

electronic robot barf. Or perhaps a bug in the code. ​It is dangerous to rely on sensor reset functions
instead of resolving the true issue.​ Please don’t hear us wrong. ​Having emergency reset functions is
important; however, they should only ever be used in a true emergency.

THE END… or is it…?
(It might be... who knows...)

ChimiSwerve White Paper 41

